-8x^2+10=-25x^2+14

Simple and best practice solution for -8x^2+10=-25x^2+14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8x^2+10=-25x^2+14 equation:



-8x^2+10=-25x^2+14
We move all terms to the left:
-8x^2+10-(-25x^2+14)=0
We get rid of parentheses
-8x^2+25x^2-14+10=0
We add all the numbers together, and all the variables
17x^2-4=0
a = 17; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·17·(-4)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{17}}{2*17}=\frac{0-4\sqrt{17}}{34} =-\frac{4\sqrt{17}}{34} =-\frac{2\sqrt{17}}{17} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{17}}{2*17}=\frac{0+4\sqrt{17}}{34} =\frac{4\sqrt{17}}{34} =\frac{2\sqrt{17}}{17} $

See similar equations:

| x^2−4x+3=0 | | 6-8x=6x-8+24 | | 10/4y=2y-2 | | 7=z-15 | | 36-2x=-2x+3 | | 4x-8/5=-4 | | 7+(6×52+3)=x | | 2m+m+(m+10)2m=180 | | -12n+15=-11n-9 | | x-46+x+x-35+0.50x=360 | | 134+(2x+1)=180 | | -3/7(2w-7)=9 | | -3p+32=11 | | w+3/5=2w | | (x-46)+x+(x-35)+0.50x=360 | | (3f-6)=(-9f) | | (2(r-3))/4-8=50 | | -9+20=19x-4-18 | | 1.2t-7.2t=0 | | 1/3*x+4=x-2 | | 3(4x+6)=7x | | 8m-15=-7 | | -8+3+2x=-8 | | (7y+5)+(133)=180 | | 3/4x+2=4x-1 | | 1x-8=-2x+7 | | 17-91n=1-7n | | 146+(5x+1)146=180 | | (V-4)^2=2v^2-16v+31 | | n=20=-26 | | 3j+2=7 | | 1/15(8n-45)=-35 |

Equations solver categories